Relative Perturbation Bounds for Eigenvalues of Symmetric Positive Definite Diagonally Dominant Matrices
نویسنده
چکیده
For a symmetric positive semi-definite diagonally dominant matrix, if its off-diagonal entries and its diagonally dominant parts for all rows (which are defined for a row as the diagonal entry subtracted by the sum of absolute values of off-diagonal entries in that row) are known to a certain relative accuracy, we show that its eigenvalues are known to the same relative accuracy. Specifically, we prove that if such a matrix is perturbed in a way that each off-diagonal entry and each diagonally dominant part have relative errors bounded by some , then all its eigenvalues have relative errors bounded by . The result is extended to the generalized eigenvalue problem.
منابع مشابه
Relative Perturbation Theory for Diagonally Dominant Matrices
OF DISSERTATION RELATIVE PERTURBATION THEORY FOR DIAGONALLY DOMINANT MATRICES Diagonally dominant matrices arise in many applications. In this work, we exploit the structure of diagonally dominant matrices to provide sharp entrywise relative perturbation bounds. We first generalize the results of Dopico and Koev to provide relative perturbation bounds for the LDU factorization with a well condi...
متن کاملBounding the error in Gaussian elimination for tridiagonal systems
If is the computed solution to a tridiagonal system Ax b obtained by Gaussian elimination, what is the "best" bound available for the error x and how can it be computed efficiently? This question is answered using backward error analysis, perturbation theory, and properties of the LU factorization of A. For three practically important classes of tridiagonal matrix, those that are symmetric posi...
متن کاملTight bounds on the infinity norm of inverses of symmetric diagonally dominant positive matrices
We prove tight bounds for the ∞-norm of the inverse of symmetric diagonally dominant positive matrices. Applications include numerical stability for linear systems, bounds on inverses of differentiable functions, and the consistency of maximum entropy graph distributions from single samples.
متن کاملNew Relative Perturbation Bounds for Ldu Factorizations of Diagonally Dominant Matrices
This work introduces new relative perturbation bounds for the LDU factorization of (row) diagonally dominant matrices under structure-preserving componentwise perturbations. These bounds establish that if (row) diagonally dominant matrices are parameterized via their diagonally dominant parts and off-diagonal entries, then tiny relative componentwise perturbations of these parameters produce ti...
متن کاملInverses of symmetric, diagonally dominant positive matrices and applications
We prove tight bounds for the ∞-norm of the inverse of a symmetric, diagonally dominant positive matrix J ; in particular, we show that ‖J‖∞ is uniquely maximized among all such J . We also prove a new lower-bound form of Hadamard’s inequality for the determinant of diagonally dominant positive matrices and an improved upper bound for diagonally balanced positive matrices. Applications of our r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Matrix Analysis Applications
دوره 31 شماره
صفحات -
تاریخ انتشار 2009